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Abstract. Strengths of Gamow-Teller decays of Tz = ±1 nuclei to Tz = 0 odd-odd nuclei have been
calculated by using spherical shell model and deformed Nilsson wave functions. The role and competition
of the microscopic direct and spin-flip mechanisms generating Gamow-Teller transitions are analyzed.
Analytical expressions derived for the B(GT) values give useful insight into the regularities of B(GT)
values along the N = Z line. The crucial role of configuration mixing is discussed.

PACS. 23.40.-s β decay; double β decay; electron and muon capture – 21.60.Cs Shell model – 21.60.Ev
Collective models

1 Introduction

The Gamow-Teller (GT) beta decay of nuclei with T = 1,
Jπ = 0+ to T = 0, Jπ = 1+ states of odd-odd, N = Z nu-
clei has been the object of numerous experimental and
theoretical investigations (see, for example, [1–8]). The
mass number of such nuclei is A = 4n+2, with integer n.
The nuclei of this type are characterized by a relatively
low-level density [9] and by the existence of T = 1 and
T = 0 excited states in the same energy range [10] , which
makes them convenient objects for beta-gamma-ray spec-
troscopy.
As a matter of fact, most of the strongest known

GT decays belong to this category. The classical exam-
ple is that of 6He, which decays to 6Li with ft = 813
(log ft = 2.91) [11]. In a simplified picture, 6He is an α
particle plus two neutrons in the same orbital; in fact, it
is a halo nucleus. The GT transition is achieved through
spin-isospin flip (for total S and T ), and the initial and fi-
nal orbital wave functions have a (nearly) perfect overlap.
Such GT transitions are usually called favored allowed or,
as in this particular case, even superallowed. This type of
decay can be further followed at higher masses. For ex-
ample, at the beginning of the pf -shell, the 42Ti nucleus
decays to 42Sc with ft = 1562(387) [12]. These nuclei have
two nucleons outside the doubly magic 40Ca core. The ev-
idence beyond 42Ti is only fragmentary. The experimental
investigation of GT decays of heavier nuclei with T = 1
can be pursued by using radioactive beams [13].
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In the case of some light nuclei, the considerable GT
strength of this type of decay can be explained by the
Wigner SU(4) symmetry [14,15]. Both the initial and the
final state belong to the same irreducible representation
(irrep) of SU(4). Since the GT operators σiτ± are SU(4)
generators, such transitions are allowed. GT transitions
between different irreps are forbidden. This situation hap-
pens in the decay of T = 1 nuclei to even-even, N = Z
nuclei (A = 4n). In this case, the parent and daughter
nuclei do not belong to the the same SU(4) irrep. How-
ever, the SU(4) symmetry works only for some selected
nuclei in predominantly the lower part of p- and sd-shells.
With increasing mass, the SU(4) symmetry starts getting
broken by the stronger spin-orbit coupling, and this leads
to smaller GT strengths for the decay to N = Z, odd-odd
nuclei [1].

The properties of odd-odd, N = Z nuclei situated
in the pf -shell have been studied in recent years by in-
beam gamma-ray spectroscopy [16–23]. The persistence of
strong M1 transitions for specific configurations in odd-
odd N = Z nuclei was one of the important findings [24,
25]. The strong selection rules for the the isovector∆T = 1
M1 transitions in odd-odd N = Z nuclei have been associ-
ated with the quasideuteron (QD) degree of freedom, i.e.,
a proton and a neutron coupled to an even-even T = 0
core which is inert with respect to ∆T = 1 excitations.
The simple two-nucleon scheme results supported by the
full pf -shell model calculations helped to reveal regular
features in the structure of the the odd-odd nuclei com-
mon for the sd- and pf -shell. Since the spin part of the
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M1 transition operator is proportional to the GT opera-
tor the result of previous studies motivated us to look at
the GT transitions in the same regions along the N = Z
line and to find any similar regularities or consequences of
the regularities found for the M1 transitions.
The goal of this work is to calculate matrix elements

(m.e.) of the GT transition operator from T = 1 nuclei to
T = 0 states of odd-odd, N = Z nuclei in the framework
of the spherical shell model and deformed Nilsson model,
in order to understand the mechanism that governs the
behavior of the B(GT) strength for the low-lying states.

2 Two-nucleon configurations

The reduced m.e. for the allowed GT transition between
initial |i〉 state and final |f〉 state is defined as

〈f‖στ‖i〉 = 〈f‖
∑

k

σ(k)τ±(k)‖i〉, (1)

where σ(k) and τ(k) are single-particle spin and isospin
operators, respectively, with the convention τ+|n〉 = |p〉.
The sum in eq. (1) is taken over the valence particles.
In the most general case, the GT m.e. (1) can be writ-

ten down in terms of one-body matrix elements of the GT
operator as follows:

〈f‖στ‖i〉 =
∑

j1,j2

Dj1,j2(i, f) (2)

with

Dj1,j2(i, f) = n1,2(i, f)〈j1‖στ‖j2〉, (3)

where the sum runs over single-particle orbitals ji included
in the shell model configurational space, 〈j1‖στ‖j2〉 is
one-particle GT m.e., and n1,2(i, f) are the one-body tran-
sition densities defined as

n1,2(i, f) = 〈f‖a†1a2‖i〉. (4)

The n1,2(i, f) quantity determines the weight of one-body
〈j1‖στ‖j2〉 m.e. in the total m.e. between initial and final
states and has the meaning of occupation number of the
j-orbital if i = f and j1 = j2 = j. The one-body GT m.e.
〈j1‖στ‖j2〉 is defined as a direct one when j1 = j2:

〈j‖στ‖j〉 = (−1)j+l−1/2

√

6j(j + 1)(2j + 1)

2l + 1
, (5)

and as a one-body spin-flip m.e. when j1 = l ± 1/2 and
j2 = l ∓ 1/2:

〈j1‖στ‖j2〉 = (−1)j2+l−1/24

√

3l(l + 1)

2l + 1
. (6)

Let us consider the case of two valence particles and
the GT transitions between 0+, T = 1 and 1+, (T = 0, 1)
states. If the Jπ = 0+ state is formed by two particles

occupying the j = l+1/2 orbital (i.e. |j2>; 0+;T = 1;Tz =
1〉) then there is a direct

〈j2>; 1+T=0‖στ‖j2>; 0+T=1〉 =
√

4l + 6

2l + 1
, (7)

and a spin-flip

〈[j< × j>]; 1
+
T=0,1‖στ‖j2>; 0+T=1〉 =

√

4l

2l + 1
(8)

GT matrix element, where j> = l+1/2 and j< = l− 1/2.
For the case of the initial |j2<; 0+;T = 1;Tz = 1〉 state,
one has

〈j2<; 1+T=0‖στ‖j2<; 0+T=1〉 = −
√

4l − 2
2l + 1

(9)

for the direct m.e., and

〈[j< × j>]; 1
+
T=0,1‖στ‖j2<; 0+T=1〉 =

√

4l + 4

2l + 1
(10)

for the spin-flip GT matrix element. It is worth empha-
sizing that the direct m.e. for the j> case (eq. (7)) is the
largest among all others for the same value of quantum
number l.
In both j> and j< cases there are two T = 0 and

one T = 1 final Jπ = 1+ states. If there is no configura-
tion mixing, then the values of the GT m.e. are given by
eqs. (7)-(10) and the decay to the lowest T = 0 state is
governed by the direct mechanism entirely, while another
T = 0 state has a spin-flip character. In the case of the
final T = 1 state only the spin-flip mechanism is possible.
The numerical B(GT) values for the direct transition are
shown in the third column of table 1.
In the realistic case of configuration mixing caused by

the residual interaction the GT m.e. for the final T = 0
state is the superposition of direct and spin-flip terms,
while only the spin-flip is possible for the final state with
T = 1. Therefore the issue of interference between di-
rect and spin-flip contributions concerns mostly the lowest
Jπ = 1+ states in daughter odd-odd N = Z nuclei, which
are always T = 0 states.
Using eqs. (7) and (8) it is easy to check that the

summed GT strength is independent of l and amounts
to 6 for any residual interaction. We get the same amount
in the LS coupling scheme if the 0+, T = 1 state is a pure
L = 0, S = 0 state and the 1+, T = 0 state has L = 0
and S = 1. Of course, the GT strength obeys a more
general sum rule

∑

B(GT)− −B(GT)+ = 3(N −Z) [26–
28], but in the simple case of two nucleons it yields the
same value of 6 [28]. The same is valid for the the initial
∣

∣j2<;T = 1;Tz = 1; J
π = 0+

〉

state.
One may expect that the simple formulas given by

eqs. (7)-(10) will work only for the spherical nuclei which
can be modelled as an even-even inert core plus two nu-
cleons (or two nucleon holes) occupying the same sin-
gle j-shell. The results of this extreme approximation are
given in the third column of table 1.
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Table 1. The B(GT) values for the transitions between 0+1 , Tz = 1, T = 1 state of the parent nucleus and 1+, Tz = 0, T = 0 state
of daughter nucleus. The structure of the final 1+ states in single-j approximation and corresponding B(GT) values (eqs. (7)
and (9)) are shown in the second and third columns, respectively. The shell model results with effective CKI [29], USD [2] and
FPD6 [30] interactions for p-, sd- and pf -shells, respectively, are given in fourth and fifth columns (SM). The calculated B(GT)
values are given for quenching factor αq = 1 and αq = 0.8. Experimental data and corresponding references are given in the
last column.

Daughter Theory Expt. Ref.

nucleus (lj)2 Eqs. (7), (9) SM(αq = 1.0) SM(αq = 0.8)
6Li p23/2 3.3 5.51 3.53 4.76(1) [11]
14N p−2

1/2 0.7 0.05 0.03 3.46(3)·10−7 [31]
18F d25/2 2.8 5.06 3.24 3.20(4) [32]
38K d−2

3/2 1.2 0.12 0.08 0.058(8) [33]
42Sc f27/2 2.6 4.84 3.10 2.53(65) [12]

There is a noticeable difference for the B(GT) values
for the j = l+1/2 and j = l− 1/2 cases. The shell model
results with realistic interactions are given in the fourth
column of table 1. If we scale down the shell model val-
ues with the appropriate quenching factors we will get
satisfactory agreement with experiment (column 5). If we
compare the results of the QD scheme (column 3) to the
ones of the shell model calculations (column 4) we find
that initially large B(GT) values become larger and small
ones almost vanish. In the shell model the residual inter-
action naturally mixes direct j2>, j

2
< and spin-flip [j>×j<]

configurations. Shell model calculations show that, for the
lower part of any shell, the j2> components with maximal
l have the largest weight for the Jπ = 0+ state, while
the structure of the lowest Jπ = 1+ states, in addition to
direct j2> component, becomes solidly represented by the
spin-flip [j>× j<] one. For instance, the shell model wave
function with the CKI interaction [29] for the 0+1 , T = 1
of 6He has the following form:

|0+, T = 1〉 = 0.83|p2
3/2; 0

+〉+ 0.55|p2
1/2; 0

+〉, (11)

while for the 1+1 , T = 0 state of
6Li one has

|1+, T = 0〉 = 0.56|p2
3/2; 1

+〉+ 0.09|p2
1/2; 1

+〉
+0.82|[p3/2 × p1/2]; 1

+〉. (12)

Calculating the GT m.e. between wave functions (11) and
(12) we obtain

〈1+1 , T = 0‖στ‖0+1 , T = 1〉 =
0.46〈p2

3/2; 1
+‖στ‖p2

3/2; 0
+〉

+0.05〈p2
1/2; 1

+‖στ‖p2
1/2; 0

+〉
+0.68〈[p3/2 × p1/2]; 1

+‖στ‖p2
3/2; 0

+〉
+0.45〈[p3/2 × p1/2]; 1

+‖στ‖p2
1/2; 0

+〉, (13)

where the first two terms are direct-mechanism contribu-
tions and the last two are spin-flip ones. The weight of
spin-flip terms is larger than the weight of direct ones;
however the spin-flip component is characterized by the

GT m.e. (see eq. (8)) that is relatively small (especially
for a small l) as compared to the direct one (see eq. (7)).
Therefore the individual contributions of each term in
eq. (13) are 0.84, −0.03, 0.76 and 0.73, respectively. Thus
the contribution of the first direct term (0.84) and its posi-
tive interference with the last two spin-flip terms (0.76 and
0.73) plays a very important role in the enhancement of
the B(GT) strength. Consequently, the mechanism of the
enhancement is hidden in the interference of the direct and
spin-flip contributions. For the lower part of major shell
(j2> dominates the 0

+ structure) one has constructive in-
terference of the GT matrix elements (7) and (8) , while
for the upper part (j2< dominates the structure of the 0

+

state) there is destructive interference of (9) and (10). An
appropriate example of the destructive interference is the
case of 14N, where the shell model wave functions with the
CKI interaction for the 0+1 , T = 1 and 1

+
1 , T = 0 states

have the following structure:

|0+T=1〉 = 0.38|p−2
3/2; 0

+〉+ 0.92|p−2
1/2; 0

+〉, (14)

|1+T=0〉 = 0.96|p−2
1/2; 1

+〉+ 0.26|[p−1
3/2 × p−1

1/2]; 1
+〉. (15)

The negative sign of the GT m.e. given by eq. (9) leads
to the destructive interference of the direct p2

1/2 contribu-

tion (−0.73) and spin-flip (0.4 and 0.11) ones resulting
in a very small B(GT) value of 0.05. However, this small
value is still very different from the experimental data (see
table 1). This is a well-known problem [34,35] that re-
quires the use of the tensor forces to solve it. Using the
example of 14N in the present paper, we aimed only at
the schematic illustration of the interference mechanism
discussed above.
Systematic regularities originating in an interplay of

direct and spin-flip contributions are appropriate for other
nuclei shown in table 1 (18F, 38K and 42Sc).
Some other aspects of the problem discussed above

may be revealed using the LS coupling scheme instead of
the jj one. We turn shortly to the LS coupling below and
analyze the same phenomena.
The two-particle wave functions in shell model p-space

(the 6Li case) given by eqs. (11), (12) have the following
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structure in the LS basis:

|0+1 , T = 1〉 = 0.995|1S0〉 − 0.030|1P0〉, (16)

|1+1 , T = 0〉 = 0.95|3S1〉+ 0.07|1P1〉+ 0.2|3D1〉, (17)

where 2S+1LJ labels the state with quantum numbers J ,
L and S.
Since the 0+1 , T = 1 and the 1

+
1 , T = 0 states are al-

most completely singlet 1S0 and triplet
3S1 states, respec-

tively, the B(GT) strength is mostly due to the m.e. be-
tween these components and may be calculated straight-
forwardly. This is a two-nucleon spin-flip transition (S = 0
to S = 1); however, on the level of one-nucleon degree of
freedom this is not a one-nucleon spin-flip (i.e. j> to j<)
process, as one may expect, but a strong mixing of direct
(i.e., j> to j>) and spin-flip transitions, as we have shown
above.
The structure of the two-nucleon wave functions in

the LS representation becomes more complicated when
we approach the fp-shell. Thus in the case of shell model
calculations for the 42Sc one finds that L and S are not
good quantum numbers for the 0+1 , T = 1 state and the
1+1 , T = 0 state as well:

|0+1 , T = 1〉 = 0.755|1S0〉 − 0.656|3P0〉, (18)

|1+1 , T =0〉=0.625|3S1〉+ 0.614|1P1〉+ 0.485|3D1〉. (19)
Calculating the GT m.e. between the states (18) and (19)
we can identify the contributions of the components with
L = 0 and L = 1:

〈1+1 , T = 0‖στ‖0+1 , T = 1〉 =
0.472〈3S1‖στ‖1S0〉 − 0.403〈1P1‖στ‖3P0〉. (20)

If one substitutes the values of partial GT m.e. with L =
0 and L = 1 in eq. (20), one notes that they interfere
positively:

〈1+1 , T = 0‖στ‖0+1 , T = 1〉 = 0.711
√
6 + 0.323

√
2, (21)

where the first term corresponds to the 〈3S3‖στ‖1S1〉 m.e.
and the second to 〈1P1‖στ‖3P0〉. Positive interference of
two terms in eq. (21) results in a large B(GT) value
of 4.84.
This type of constructive interference is closely related

to the positive interference of the direct f 2
7/2 and spin-flip

[f7/2 × f5/2] GT contributions and has the same origin
as the interference of the orbital and spin parts of the
M1 m.e. [24]. This stems from the fact that the spin and
orbital angular momentum for the f7/2 orbital (j> type)
are aligned.
In the case of two holes in p-shell (14N) or sd-shell

(38K) the shell model wave functions of the 0+ state
is dominated by the j< orbital components (see e.g.,
eqs. (14), (15)). This translates, for example for 38K, to
the following structure in LS representation:

|0+1 , T = 1〉 = 0.65|1S0〉+ 0.76|3P0〉, (22)

|1+1 , T = 0〉 = 0.46|3S1〉+ 0.29|1P1〉+ 0.84|3D1〉. (23)

The situation in the upper part of the sd-shell (38K) is
strikingly similar to the 14N case [34]. The lowest J =
1+, T = 0 state has a large triplet 3D1 component (70%)
which does not contribute to the GT transition. Further-
more, there is a destructive interference of the singlet 1P1

(9%) and triplet 3S1 (21%) contributions that results in
a tiny B(GT) value. The destructive interference of 1P1

and 3S1 contributions at the upper part of the sd-shell
corresponds to the negative interference of direct d2

3/2 and

spin-flip [d3/2 × d5/2] contributions in terms of one-body
m.e. as we have shown above. This phenomenon is related
to the fact that the spin and orbital momentum of the j<
orbital are anti-aligned. This leads also to the cancellation
of orbital and spin parts of M1 operator for the isovector
transitions in odd-odd N = Z nuclei [24].
In the following section we would like to explore an

interplay of direct and spin-flip mechanism for the case of
many-nucleon configurations.

3 Deformed configurations

One has a more complicated situation in the case of
nval = 4n+2 valence particles with n ≥ 1 along the N = Z
line. The accumulated proton-neutron interaction in the
considered case rapidly (especially in the case of light nu-
clei) leads to the increase of quadrupole deformation. This
fact allows one to use the collective rotational model for
the analysis of GT-transitions in deformed nuclei along
the N = Z line. One of the useful and simple models in
which one can address this question is the particle-plus-
rotor model (PRM) [36]. This model gives nice interpre-
tation of the GT transitions for deformed odd-A nuclei
(see [36], p. 306) and one may expect the same for the
odd-odd nuclei.
In the next subsection we present the main idea of the

model and show how the GT matrix elements calculated
for deformed states may be decomposed into contributions
of one-body GT m.e. for spherical orbitals.

3.1 Particle-plus-rotor model

The basic assumption of the model [37,38] is that one
has two nucleons outside an even-even deformed rotat-
ing core. We consider the simplified version of this model
neglecting the Coriolis interaction and the residual inter-
action between nucleons in the two-nucleon cluster, how-
ever explicitly treating the isospin degree of freedom. Then
the states of the nucleus are characterized by the quan-
tum numbers JMKT and the total wave function has the
form appropriate to a rotationally invariant system with
axial symmetry which also possesses the signature sym-
metry [36]:

|JMKT 〉 =
√

2J + 1

16π2(1 + δK,0)

×
[

DJ
MKΦK,T + (−1)J+KDJ

M−KΦK,T

]

. (24)
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The wave function in the intrinsic system is

ΦK,T =

[

ua(1)ub(2) + (−)Tua(2)ub(1)
2

]

ζTTz
(1, 2), (25)

where uρ≡{Ω,Λ,nz,tz}(i) are single-particle eigenfunctions
of the Nilsson Hamiltonian, Ωρ is the 3-projection of par-
ticle angular momentum, K = Ωa + Ωb and ζ

T
Tz
(1, 2) is

the isospin wave function with the isospin quantum num-
bers T and Tz = tz(1) + tz(2). The states belonging to a
K = 0+ band have only even (odd) spins for the signature
quantum number r = +1 (−1). It can be shown that states
belonging to the T = 1 (T = 0) band have r = +1 (−1).
The coupling of the angular momenta of the two-nucleon
subsystem and the rotor, that is implicit in eq. (24), can
be exhibited by transforming to the representation of ex-
plicit coupling of angular momenta [36] appropriate for a
strongly coupled system. This representation, which can
be treated also as an algebraic representation [39], allows
one to work with spherical shell model configurations.
As a starting point we use particle-plus-rotor model

basis states written in terms of spherical single-particle
wave functions in a strong coupling approximation [36,39]:

|JMK〉 =
√

1 + δKR,0

×
∑

R,j

√

(2R+ 1)

2J + 1
CJK
RKRjΩχ

Ω
j

[

|R〉 ⊗ |j〉
]J

M

, (26)

where CJK
RKRjΩ is the Clebsch-Gordan coefficient, χ

Ω
j are

projection coefficients of single-particle Nilsson orbitals
with quantum numbers [NnzΛ]Ω on the spherical single
particle |nljΩ〉 basis [40]:

|NnzΛ;Ω〉 =
N+1/2
∑

j=Ω

χΩj |nljΩ〉, (27)

R is the core angular momentum quantum number and

[

|R〉 ⊗ |j〉
]J

M
=
∑

MR,m

CJM
RMRjm|RMR〉 · |nljm〉

are weakly coupled particle-plus-rotor states. The wave
functions for two-particle states coupled to the KR =
0, T = 0 rotational core can be easily constructed by ap-
plying eq. (26). After some simple transformations one
obtains

|JMKTTz〉 =
∑

R,Jq

√

2(2R+ 1)

2J + 1
CJK
R0JqK

[

|R〉 ⊗ |Jq〉
]JT

MTz

, (28)

where |Jq〉 is a two-nucleon state in the deformed field:

|Jq〉 ≡ |JqMqKTTz〉 =
∑

j1,j2

χΩ1

j1
χΩ2

j2
C
JqK
j1Ω1j2Ω2

[

|j1〉 ⊗ |j2〉
]JqT

MqTz

, (29)

and Ωi is the Nilsson quantum number of angular mo-
mentum projection on the symmetry axis for the nu-
cleons building the two-nucleon cluster. Let us suppose
that the intrinsic structure of the initial 0+,Kπ = 0+

state is determined by the following Nilsson orbitals:
∣

∣

∣
Nn

(1)
z Λ1;Ω1

〉

×
∣

∣

∣
Nn

(2)
z Λ2;Ω2

〉

(Ω1 = −Ω2) while the

final 1+, T,K = Ω3 ± Ω4 states are characterized by the

following structures:
∣

∣

∣
Nn

(3)
z Λ3;Ω3

〉

×
∣

∣

∣
Nn

(4)
z Λ4;Ω4

〉

. We

then obtain the following formula for the B(GT) values
for the transitions between these initial and final states:

B(GT ; 0+K=0 → 1+K) =

4

9





∑

j1,j3

χΩ1

j1
χΩ3

j3
C1K
j1Ω1j3Ω3

〈j1‖στ‖j3〉
√

2− δ1,3





2

. (30)

The terms with j1 = j3 in eq. (30) represent the direct
mechanism while the terms with j1 6= j3 correspond to
the one-body spin-flip mechanism. The derived eq. (30) is
analogous to eq. (2), where the one-body transition den-
sities n1,3(0

+
1 , 1

+
1 ) have the following simple form:

n1,3(0
+
1 , 1

+
1 ) =

χΩ1

j1
χΩ3

j3
C1K
j1Ω1j3Ω3

√

2− δ1,3
. (31)

3.2 Results and comparison with shell model

It is instructive to analyze eq. (30) taking into account a
dominant spherical component in the Nilsson state, i.e., to
put χΩj = 1 for the dominant j ≡ jd-component. Following
this prescription we get the set of simple formulas

B(GT ; 0+ → 1+T=0,K) =

4l + 6

2l + 1

[

C
jd
1
Ω1

jd
3
Ω31K

]2

for jd1 = jd3 = l + 1/2, (32)

4l − 2
2l + 1

[

C
jd
1
Ω1

jd
3
Ω31K

]2

for jd1 = jd3 = l − 1/2, (33)

Equations (32) and (33) correspond to the direct tran-
sition mechanism for deformed states and differ from
eqs. (7) and (9) for the spherical case only by the Clebsch-
Gordan coefficients. The spin-flip GT transitions are de-
scribed by

B(GT ; 0+ → 1+T=0,1,K) =

4l

2l + 1

[

C
jd
1
Ω1

jd
3
Ω31K

]2

for jd1 = jd3 + 1 = l + 1/2, (34)

4(l + 1)

2l + 1

[

C
jd
1
Ω1

jd
3
Ω31K

]2

for jd1 = jd3 − 1 = l − 1/2. (35)

Similarly to the direct mechanism, the spin-flip B(GT)
values (34) and (35) for the deformed states differ from
the corresponding ones for two-nucleon spherical states
by the Clebsch-Gordan coefficient too.
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Table 2. B(GT) values for the transitions between 0+1 , Tz = 1, T = 1,K = 0 state and first 1+1 , Tz = 0, T = 0,K = 0 states. The
intrinsic structure of the final 1+1 states is shown in the third column, where [lj] indicates the dominant spherical component
in eq. (27). Calculations are performed for effective quadrupole deformation βeff (column 2). Effective USD [2] interaction was
used in the shell model calculations for the sd-shell nuclei. Effective KB3G [41] and KB3 [19] interactions were used for 46V
and 50Mn, respectively. The B(GT) values are shown for the quenching parameters αq = 1.0 and αq = 0.77. Experimental data
and corresponding references are given in the last column.

B(GT;0+ → 1+)

Daughter Structure Theory

nucleus βeff ([lj], Ω)2 Eqs. (32), (33) PRM, Eq. (36) Shell model (SM) Expt. Ref.

αq = 1.0 αq = 1.0 αq = 0.77 αq = 1.0 αq = 0.77
22Na 0.43 ([d5/2], 3/2)

2 0.72 1.38 0.82 1.89 1.12 0.85(2) [2]
26Al 0.38 ([d5/2], 5/2)

2 2.00 2.00 1.18 1.91 1.13 1.08(2) [33]
34Cl 0.23 ([d3/2], 3/2)

2 0.72 0.40 0.24 0.009 0.005 0.0188(22) [2]
46V 0.23 ([f7/2], 3/2)

2 0.37 0.71 0.42 0.549 0.325 0.64(17) [42]
50Mn 0.25 ([f7/2], 5/2)

2 1.02 1.34 0.79 1.31 0.78 0.59(16) [43]
54Co 0.16 ([f7/2], 7/2)

2 2.00 2.00 1.18 0.67(15) [44]
66As 0.23 ([f5/2], 3/2)

2 0.37 0.36 0.22
70Br 0.25 ([p3/2], 3/2)

2 2.00 1.49 0.88
74Rb 0.25 ([f5/2], 5/2)

2 1.02 0.81 0.48

The above-derived formulas give a qualitative insight
into the general tendency for the distribution of Gamow-
Teller strength based only on the information about quan-
tum numbers of Nilsson orbitals closest to the Fermi sur-
face. These formulas indicate that the B(GT) values are
proportional to Ω2 for the lowest quasideuteron states
Jπ = 1+, T = 0,K = 0, which are characterized by
identical proton and neutron quantum numbers. Subse-
quently, the largest portion of the strength is expected for
the states characterized by the highest value of Ω, where
it is completely due to the direct mechanism.
The lowest J = 1+1 , T = 0 state in odd-odd daughter

nucleus is of special interest. If K = 0 and Ω 6= 1/2 (i.e.
when there is no mixing between K = 0 and K = 1 states
caused by the Coriolis interaction) for the J = 1+1 , T = 0
state we obtain

B(GT ; 0+ → 1+) = 2

(

N
∑

l=lmin

Ω

j>
G(Ω, l)

)2

, (36)

where lmin = Ω + 1
2 (−)N , and

G(Ω, l)=
(

χΩj>

)2
+
(

χΩj<

)2−
√
2χΩj<

χΩj>

√

(

j>
Ω

)2

−1. (37)

The character of the interference (positive or negative)
between direct and spin-flip contributions in eq. (37) de-
pends on the amplitudes of spin-orbit partners from the
single-particle Nilsson wave function. There may be also
another type of the interference between G(Ω, l) terms
with different orbital quantum number l. The B(GT) val-
ues calculated using eq. (36) are listed in column PRM
in table 2. We have also performed shell model calcula-
tions in full sd- and pf -spaces for some of the nuclei. The

B(GT) values for different quenching are listed in column
SM in table 2.

Comparing the single-j deformed orbital approxima-
tion results (column 4) and exact Nilsson wave function
results (column 5) without quenching (αq = 1.0) one no-
tices that B(GT) values are large in the lower part of
the sd- or pf -shell while for the upper part one observe
a considerable decrease of the GT strength. It is notice-
able that the configuration mixing caused by the enhanced
quadrupole correlations acts constructively for the lower
part and destructively for the upper part as occurs for
the two-nucleon spherical configurations discussed in the
previous section.

If we take, for example, 22Na and 34Cl nuclei (sd-
shell), or 46V and 66As nuclei (pf -shell), we have the same
B(GT) for each pair of nuclei in the single-j deformed
orbital approach (column 5). However, the configuration
mixing increases the strength for the 22Na and 46V, while
a decrease is observed for the 34Cl and the 66As. This
mechanism may be easily seen from eq. (37). The first
and second terms have to be associated with the direct
mechanism while the third one is of spin-flip character.
The third term in this formula depends on the relative
sign of the amplitudes of single-particle spin-flip compo-
nent χΩj<

χΩj>
. For the 22Na the Ω = 3/21 Nilsson state is

a superposition of d5/2 and d3/2 orbitals with amplitudes

that have opposite sign. For the 34Cl case one has a Nils-
son Ω = 3/22 state which is orthogonal to the Ω = 3/21
state (assuming the same deformation for both of them)
and thus the amplitudes of d5/2 and d3/2 orbitals have the
same sign. Similar considerations are valid for the pf -shell
examples mentioned above.

Comparing the results of the collective model with
those of the shell model we note that the B(GT) val-
ues are rather similar and the regularities appropriate for
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Table 3. Partial contributions Dj1,j2(0
+
1 , 1

+
1 ) (eq. (3)) of direct and spin-flip mechanisms to the GT matrix element between

0+1 , Tz = 1, T = 1 state and 1+1 , Tz = 0, T = 0 states for sd-shell nuclei. Results are shown for shell model (SM) (eq. (2))
with the USD interaction [2] and collective particle-plus-rotor model (PRM) (eq. (36)) with corresponding value of quadrupole
deformation given in table 2. The total GT m.e. is shown in the last column.

Dj1,j2(0
+
1 , 1

+
1 )

Daughter Model Direct, j → j Spin-flip, j> → j< MGT(0
+ → 1+)

nucleus d5/2d5/2 d3/2d3/2 s1/2s1/2 d3/2d5/2

22Na SM 0.847 −0.032 −0.073 0.634 1.376

PAM 0.812 0.037 0.0 0.326 1.175
26Al SM 1.285 0.045 0.244 −0.196 1.382

PAM 1.414 0.0 0.0 0.0 1.414
34Cl SM 0.016 0.473 −0.224 −0.357 −0.092

PAM 0.016 0.830 0.0 −0.215 0.634

Table 4. Partial contributions Dj1,j2(0
+
1 , 1

+
1 ) (eq. (3)) of direct and spin-flip mechanisms to the GT matrix element between

0+1 , Tz = 1, T = 1 state and 1+1 , Tz = 0, T = 0 states for pf -shell nuclei. Results are shown for shell model (SM) (eq. (2)) with
the KB3G interaction [41] for 46V. Collective PRM results (eq. (36)) with corresponding value of quadrupole deformation given
in table 2. The total GT m.e. is shown in the last column.

Dj1,j2(0
+
1 , 1

+
1 )

Daughter Model Direct, j → j Spin-flip, j> → j< MGT(0
+ → 1+)

nucleus f7/2f7/2 f5/2f5/2 p3/2p3/2 p1/2p1/2 f7/2f5/2 p3/2p1/2

46V SM 0.710 −0.011 −0.002 0.011 0.141 −0.108 0.741

PAM 0.568 0.008 0.070 0.0 0.198 0.0 0.843
50Mn PAM 0.999 0.012 0.0 0.0 0.149 0.0 1.159
54Co PAM 1.414 0.0 0.0 0.0 0.0 0.0 1.414

collective model are qualitatively reproduced by the shell
model and by the experimental data.
The puzzling similarity of collective and shell model re-

sults motivates us to look at different direct and spin-flip
contributions to the total GT strength for both models.
Partial one-body contributions to the GT m.e. are shown
in tables 3 and 4. Comparing the results of the two mod-
els, one may see that the partial contributions of different
mechanisms are similar for the two approaches as well.
Since only the dynamics of the outer two nucleons de-
termine the character and strength of GT transitions in
collective particle-plus-rotor model one may come to the
conclusion that the same is appropriate for exact micro-
scopic shell model calculations that take into account all
possible degrees of freedom of many-body systems of va-
lence nucleons. As noticed in sect. 2, in the case when
the number of valence nucleons nv > 2, an approximation
considering only two nucleons violates the Pauli principle.
However, the successful applications of this scheme, e.g.
to the PRM, shows that the violation of the Pauli princi-
ple must be weak. In particular, the fact that protons and
neutrons populate successive Nilsson orbitals with differ-
ent values of Ω takes into account, to a certain extent,
the Pauli principle. It is interesting that sophisticated ef-
fective shell model interactions yield the same results as
the schematic Nilsson model with only quadrupole inter-
action. To get deeper understanding of the problem it has
to be elaborated farther.

4 Conclusion

In conclusion, the role of the direct and spin-flip mech-
anisms for the GT transitions from the Jπ = 0+, T =
1, Tz = 1 state to the J

π = 1+, T = 0, Tz = 0 states of
the odd-odd N = Z nucleus are analyzed in this work.
We have derived simple analytical expressions for the GT
transition strength that allow straightforward calculations
illustrating the role of the different two-nucleon configura-
tions. The comparison of the single-j and exact shell model
diagonalization results in the case of spherical two-nucleon
configurations helps to understand the mechanism lead-
ing to the enhancement or quenching of the GT transition
strength for different nuclei. Our studies show that neither
direct, j> → j> and j< → j<, nor spin-flip, j> → j<,
single-particle processes, but rather their specific combi-
nation determines the lowest GT strength. The mixing
of the configurations induced by the residual interaction
plays a decisive role for the exact B(GT) value. However,
the j2 content of the initial Jπ = 0+1 , T = 1, Tz = 1 state
itself gives a simple rule for the lowest GT strength when
T = 0 residual interaction for the Jπ = 1+1 , T = 0, Tz = 0
state is switched on. If the j2> component is dominant for

the initial Jπ = 0+1 , T = 1 state, which usually occurs for
the lower part of any major shell, then the residual in-
teraction induces strong positive interference between the
direct j2> and spin-flip j>×j< contributions that results in
enhanced B(GT) values. But if the j2< component of the
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initial Jπ = 0+1 , T = 1 state has larger weight (this usually
occurs for the upper part of major shell) then the resid-
ual interaction induces destructive interference between
the direct j2< and spin-flip j>× j< contributions, yielding
vanishing B(GT) values.
In the case of the lower part of p- and sd-shell this

mechanism leads to a situation similar to the SU(4) sym-
metry where the strong B(GT) is caused by the domi-
nant L = 0, S = 0 structure of the 0+ state and the
L = 0, S = 1 structure of the 1+ state. In the case of
stronger spin-orbital interaction when the SU(4) symme-
try is broken, i.e. for upper part of sd-shell and all fp-
shell, the interference of direct and spin-flip contributions
translates into the interference of the 〈1S1‖στ‖3S3〉 and
〈3P1‖στ‖1P3〉 m.e.’s producing a similar strong effect.
We have extended the two-nucleon scheme to the de-

formed nuclei to verify the identified mechanism. The
Nilsson single-particle states which are represented by a
mixture of various spherical single-particle states due to
the assumed quadrupole interaction, yield similar results.
We observe the same interference between direct and spin-
flip contributions that changes from positive for the lower
part of the shell to negative at the upper part. The re-
sults of simple scheme is well supported by large-scale shell
model calculations with various effective interactions. We
consider it as an indication of the crucial role of the outer
two-nucleon degree of freedom in the β decay to the lowest
Jπ = 1+, T = 0 state of odd-odd N = Z nuclei.
The understanding of the generating mechanism of GT

transitions for sd-shell and lower-part pf -shell nuclei may
be helpful for a qualitative analysis of the situation along
the N = Z line at the upper part of the pf -shell [45],
where one has to deal with proton-rich nuclei and related
astrophysical fp-process.
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